skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yoon, P H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.In recent decades, serious efforts have been made in the analytical and numerical modeling of solar radio bursts generated by the electron beam interacting with the background plasma, including the dynamic spectra with decreasing frequency over time/space. These are type II and type III radio bursts, with the fundamental components at the local plasma frequency (ωp = 2πfp) and the harmonics (nωp = 2πnfp). Synthetic spectra built for a number of radio events were able to reproduce the decreasing frequency profiles reasonably well, despite the limitations of the approximate analytical theory. Aims.We propose new modeling of dynamic radio emission spectra using weak-turbulence (WT) theory. This novel approach also aims at a self-consistent and quantitative evaluation of radio emissions, based on first-principles modeling of electron beam plasma instabilities and nonlinear wave interaction. Methods.We performed the WT simulation, which has the ability to quantitatively describe the standard plasma emission involving the nonlinear interaction of Langmuir (L), ion-sound (S), and transverse electromagnetic (T) waves. The composite dynamic spectra are constructed for type II- and type III-like events, against the background electron density model that behaves as an inverse square of the distance from the solar source. Results.The new dynamic spectra are obtained distinctly, with a rapid frequency shift for type III emissions (generated by fast electron beams from coronal sources), as well as a less steep frequency drop for type II spectra (whose sources move away from the Sun along with interplanetary shocks). Upon making a qualitative comparison with typical solar radio emission events, we find that our first-principle-based synthetic dynamic spectra are in good agreement. Conclusions.The findings of the present study demonstrate that the theoretical approach taken in this paper can be further applied to obtain (i) quantitatively relevant predictions and replications of the observed dynamic spectra of radio bursts, and (ii) more realistic large-scale models of the solar radio source, for example the type II and type III source models computed from the large-scale magnetohydrodynamics (MHD) simulations or even from direct spacecraft observations. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Context.In situ observations by the Parker Solar Probe (PSP) have revealed new properties of the proton velocity distributions (VDs), including hammerhead features that suggest a non-isotropic broadening of the beams. Aims.The present work proposes a very plausible explanation for the formation of hammerhead proton populations through the action of a proton firehose-like instability triggered by the proton beam. Methods.We investigated a self-generated firehose-like instability driven by the relative drift of ion populations using a simplified moment-based quasi-linear (QL) theory. While simpler and faster than advanced numerical simulations, this toy model provided rapid insights and concisely highlighted the role of plasma micro-instabilities in relaxing the observed anisotropies of particle VDs in the solar wind and space plasmas. Results.The QL theory proposed here shows that the resulting transverse waves are right-hand polarized and have two consequences on the protons: (i) They reduce the relative drift between the beam and the core, but above all, (ii) they induce a strong perpendicular temperature anisotropy specific to the observed hammerhead ion beam. Moreover, the long-run QL results suggest that these hammerhead distributions are rather transitory states that are still subject to relaxation mechanisms, in which instabilities such as the one discussed here are very likely involved. This foundational work motivates future detailed studies using advanced methods. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Intense upward electron beams were measured by the Juno JADE instrument in the northern hemisphere, low‐latitude auroral zone source region. In this study we report on how these electron beams interact with plasma near and within the Jovian hectometric (HOM) emission (1 MHz 5 MHz) source region. Within the source region large upward loss cones are observed in the northern polar region at radial distances of 2Rj, magnetic latitude of . Intense, narrow electron beams ( 3 keV) are then observed, but within one second wave‐particle scattering is observed, filling the loss cone to energies 50 keV. These energies persist for several seconds before fading, leaving an empty loss cone again. The loss cone provides a free‐energy source for HOM emission resulting from the cyclotron maser instability. We use quasilinear analysis to examine the generation of HOM and the dynamics of wave‐particle interaction of the electron beams with HOM, and the generation via Landau interaction of whistler mode emission. The dynamic spectrum of the HOM emission generated by the loss‐cone electrons as well as that of the low‐frequency whistler‐mode waves generated by the up‐going electron beam can be constructed by quasilinear theory, which compare well with observation. The saturated state of the energetic electron velocity distribution function constructed via quasilinear theory also compare reasonably with observation. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. This paper presents the derivation of a general wave dispersion relation for warm magnetized plasma under the two-fluid formalism. The discussion is quite general except for the assumption of low frequency and slow phase speed, for which the displacement current is negligible, under the implicit assumption that the plasma is sufficiently dense to satisfy the condition ωpe>ωce, where ωpe and ωce denote the plasma oscillation frequency and electron gyro frequency, respectively. The present discussion does not invoke charge neutrality associated with the fluctuations although it is implicitly satisfied. The resulting dispersion relation that includes the fluid thermal effects shows that there are three eigen modes, which include those corresponding to ideal MHD, namely, fast, slow, and kinetic Alfvén waves, as well as higher-frequency modes including the ion and electron cyclotron and lower-hybrid resonances. The fluid effects in the ideal MHD wave branches are influenced by the finite Larmor radius scales, and when the wave number in the cross field direction is comparable to these values, the fluid effects become significant. It is found that the Larmor radius should be interpreted in the sense as ion-acoustic gyro-radius instead of ion thermal gyro radius only. That is, it is found that the electrons also contribute to the non-ideal effect associated with the kinetic Alfvén wave. A comprehensive explanation of the polarization of each mode is also presented. The present findings indicate that the polarity may change its sign only for the kinetic Alfvén mode branch and that such a transition is based on the propagation angle. When such a change does take place, it is found that the kinetic Alfvén wave transits to an ion-acoustic mode. For each branch, it is also found that the electric field along the ambient magnetic field is purely transverse. 
    more » « less
  5. Abstract The quasi-steady states of collisionless plasmas in space (e.g., in the solar wind and planetary environments) are governed by the interactions of charged particles with wave fluctuations. These interactions are responsible not only for the dissipation of plasma waves but also for their excitation. The present analysis focuses on two instabilities, mirror and electromagnetic ion cyclotron instabilities, associated with the same proton temperature anisotropyT>T(where ⊥, ∥ are directions defined with respect to the local magnetic field vector). Theories relying on standard Maxwellian models fail to link these two instabilities (i.e., predicted thresholds) to the proton quasi-stable anisotropies measured in situ in a completely satisfactory manner. Here we revisit these instabilities by modeling protons with the generalized bi-Kappa (bi-κpower-law) distribution, and by a comparative analysis of a 2D hybrid simulation with the velocity-moment-based quasi-linear (QL) theory. It is shown that the two methods feature qualitative and, even to some extent, quantitative agreement. The reduced QL analysis based upon the assumption of a time-dependent bi-Kappa model thus becomes a valuable theoretical approach that can be incorporated into the present studies of solar wind dynamics. 
    more » « less
  6. Abstract The charged particles in the solar wind are often observed to possess a nonthermal tail in the velocity distribution function, a feature that can be fitted with the Kappa model. The anisotropic, or bi-Kappa, model of protons, electrons, and other charged particles is thus adopted in the literature for interpreting the data as well as in the context of the analysis of wave–particle interactions. The present paper develops an approximate but efficient theory of the mirror and cyclotron instabilities excited by the bi-Kappa protons in the solar wind. A velocity moment-based quasi-linear theory of these instabilities is also formulated in order to investigate the saturation behavior. Applications of the formalism are made for instabilities close to the marginally unstable state, which is typical of the solar wind near 1 au. 
    more » « less
  7. Abstract The expanding-box model of the solar wind has been adopted in the literature within the context of magnetohydrodynamics, hybrid, and full particle-in-cell simulations to investigate the dynamic evolution of the solar wind. The present paper extends such a method to the framework of self-consistent quasilinear kinetic theory. It is shown that the expanding-box quasilinear methodology is largely equivalent to the inhomogeneous steady-state quasilinear model discussed earlier in the literature, but a distinction regarding the description of wave dynamics between the two approaches is also found. The expanding-box quasilinear formalism is further extended to include the effects of a spiraling solar-wind magnetic field as well as collisional age effects. The present finding shows that the expanding-box quasilinear approach and the steady-state global-kinetic models may be employed interchangeably in order to address other more complex problems associated with the solar-wind dynamics. 
    more » « less
  8. Interchange instability is known to drive fast radial transport of particles in Jupiter's inner magnetosphere. Magnetic flux tubes associated with the interchange instability often coincide with changes in particle distributions and plasma waves, but further investigations are required to understand their detailed characteristics. We analyze representative interchange events observed by Juno, which exhibit intriguing features of particle distributions and plasma waves, including Z‐mode and whistler‐mode waves. These events occurred at an equatorial radial distance of ∼9 Jovian radii on the nightside, with Z‐mode waves observed at mid‐latitude and whistler‐mode waves near the equator. We calculate the linear growth rate of whistler‐mode and Z‐mode waves based on the observed plasma parameters and electron distributions and find that both waves can be locally generated within the interchanged flux tube. Our findings are important for understanding particle transport and generation of plasma waves in the magnetospheres of Jupiter and other planetary systems. 
    more » « less
  9. The general quasilinear Fokker–Planck kinetic equation for the gyrophase-averaged plasma particle distribution functions in magnetized plasmas is derived, making no restrictions on the energy of the particles and on the frequency of the electromagnetic fluctuations and avoiding the often made Coulomb approximation of the electromagnetic interactions. The inclusion of discrete particle effects breaks the dichotomy of nonlinear kinetic plasma theory divided into the test particle and the test fluctuation approximation because it provides expression of both the non-collective and collective electromagnetic fluctuation spectra in terms of the plasma particle distribution functions. Within the validity of the quasilinear approach, the resulting full quasilinear transport equation can be regarded as a determining nonlinear equation for the time evolution of the plasma particle distribution functions. 
    more » « less
  10. We report some of the most intense Z‐mode and O‐mode observations obtained by the Juno spacecraft while in orbit about Jupiter in a low to mid‐latitude region near the inner edge of the Io torus. We have been able to estimate the density of the plasma in this region based on the lower frequency cutoff of the observed Z‐mode emission. The results are compatible with the electron density measurements of the Jovian Auroral Distributions Experiment (JADE), on board the Juno spacecraft, if we account for unmeasured cold plasma. Direction‐finding measurements indicate that the Z‐ and O‐mode emission have distinct source regions. We have also used the measured phase space density of the JADE and the Jupiter energetic particle detector instruments to calculate estimated local growth rates of the observed O‐mode and Z‐mode emission assuming a loss cone instability and quasilinear analysis. The results suggest the emissions were observed near, but not within, a source region, and the free energy source is consistent with a loss cone. We have thus carried out the quasilinear wave analysis of the assumed remote Z‐ and O‐mode wave growths. It is shown that the remotely generated waves, propagated through an inhomogeneous medium to the satellite location, may account for the observed wave characteristics. The importance of Z‐mode in accelerating electrons in the inner Jovian magnetosphere makes these new wave mode confirmations at Jupiter of particular interest. 
    more » « less